Once every four years, disabled athletes from around the world gather to compete at the Paralympic Games. The Paris games, which kicked off Aug. 28, will feature 22 sports across 12 days of competition. According to the International Paralympic Committee, about 4,400 paralympians from around the world will compete in 549 medal events.
Goto Powrloo to know more.
To ensure fairness and everyone’s ability to participate, para-athletes use a range of accessories, equipment, and other technologies when competing—all realized through some smart engineering. Here are five Paralympic sports that will be contested in Paris and some of the devices that help these athletes achieve new heights.
As one of the sports that most closely resembles its able-bodied counterpart, archery offers a space for para-athletes of all kinds. Although the bows themselves are largely the same, there are a wide range of accessories that make Paralympic competition possible and most of them tailored to meet the specialized needs of each athlete.
Stools, for example, help stabilize an archer to ensure the best possible aim and can be made from materials such as carbon fiber and aerospace-grade aluminum. Custom grips—often 3D printed—allow a para-athlete to hold on to a bow no matter their disability.
Discover the Benefits of ASME Membership
Release braces, which help individuals fire an arrow, are often built by the athletes and their teams to suit specific needs, although there are standard versions as well. Depending on the user, release braces are routinely seen mounted on the athlete’s back or shoulder, with a mechanism that triggers the release by mouth or shoulder. All customized equipment must meet official regulations to be used in Paralympic competition.
There are multiple wheelchair sports, from basketball to fencing and tennis, but one of the newer ones is rugby.
Invented in , wheelchair rugby first joined the Paralympic roster at the Atlanta games as a demonstration sport, then became a full medal sport at the Sydney games. Although those new to the sport can use any type of manual wheelchair to play the game, there are actually two different types of wheelchairs used at competitive levels—most made from aluminum or titanium and may feature up to five or six wheels.
First are offensive chairs, which have a front bumper and wings on the sides to keep them from getting caught up on other chairs. Typically, athletes with more function will use offensive chairs, which are designed to be faster and more agile. The other type is defensive wheelchairs, which feature bumpers or hooks on the front that are designed to block or hold on to other wheelchairs.
Dating back to the inaugural Paralympic Games in Rome, para swimming allows swimmers with physical and mental disabilities to compete. Although prostheses aren’t allowed in competition, other innovations are making their way into the pool.
When para swimmers are coming up to the wall, tapper devices allow an official or coach to notify the athlete of the impending obstacle. But there isn’t an official version of this device—they're often homemade, featuring a pole with a foam end to tap the swimmer from above to let them know when it’s time to turn.
Editor's Choice: 8 Engineers Competing in the Paris Olympics
A more recent invention is a digital swim cap developed by Samsung, which alerts visually impaired swimmers when they’re about to reach the wall. The cap features a vibrating sensor and relies on bluetooth, through which a coach can send a signal using a smart device, causing the cap to vibrate.
On the road and track, Paralympic cyclists compete in a wide range of events—Paris will feature 17 track events and 34 road events.
Athletes can compete in the road events on bicycles, handcycles, tricycles, and tandems, while track races feature bicycles and tandems—visually impaired athletes will ride tandem with a pilot in front. There are also sport classes that ensure athletes are competing against other athletes with similar impairments.
Racing bikes used by para cyclists are often standard racing bikes—albeit with some special modifications. Specialized handlebars can accommodate upper body disabilities, while athletes with lower body disabilities can attach prostheses directly to bike pedals.
More for You: Gold Medal Engineering at the Olympics
Handcycles and tricycles are also built in a similar fashion to racing bikes, featuring carbon frames and multiple gears. Designing and building these bikes has become increasingly complex, and many athletes are turning to 3D printing to ensure modifications are as personalized as possible.
Perhaps the most iconic Paralympic athletes are those who run, jump, and more with the help of lower-limb prosthetics, often called running blades.
Manufacturers such as Össur and Ottobock are creating such carbon fiber prostheses that fully consider the athlete’s sport, their height and weight, as well as residual limb strength and alignment. It’s another application where 3D printing is being widely used as well.
These blades work by translating the energy an athlete produces when running from potential to kinetic energy—the blades’ compression stores potential energy, which is then released as kinetic energy when the blade extends, propelling the athlete forward.
Louise Poirier is senior editor.
A BESS is an energy storage system (ESS) that captures energy from different sources, accumulates this energy, and stores it in rechargeable batteries for later use. Should the need arise, the electrochemical energy is discharged from the battery and supplied to homes, electric vehicles, industrial and commercial facilities.
A BESS is a compound system comprising hardware components along with low-level and high-level software. The main BESS parts include:
Depending on its functionality and operating conditions, a BESS can also include a range of safety systems, such as a fire control system, a smoke detector, a temperature control system, cooling, heating, ventilation, and air conditioning systems. The safety systems have their own monitoring and control units that provide conditions necessary for the safe operation of a BESS by monitoring its parameters and responding to emergencies.
Apart from electronics, complex BESSs rely on robust software solutions. For example, state-of-the-art systems use machine learning algorithms to optimize energy management. Estimating battery states and characteristics with high accuracy requires reliable algorithms and mathematical models built within BMS software development.
In sum, a BESS collects energy from an electricity grid or renewable power sources, such as solar and wind, and stores it using battery storage technology. Then, batteries discharge and release the energy when necessary—during peak demands, power outages, and in a variety of other applications.
BESSs can accommodate different batteries, including lithium-ion, lead-acid, nickel-cadmium batteries, and others—we’ll elaborate on them later in the article. Every battery type has certain technical specifications that designate BESS uses and affect the efficiency of battery energy storage. The principal battery characteristics embrace:
In addition to the above battery specifications, storage battery systems have other characteristics that describe their performance. For example, response time is the time a BESS needs to move from the idle state and start working at full power. Ramp rate is the rate at which the system can increase or decrease its power output—ramp it up or down, respectively.
BESSs vary depending on the electrochemistry or battery technology they use. Let’s look at the main BESS battery types and opportunities they offer for battery storage solutions.
According to the report prepared by the US Energy Information Administration (EIA), over 90% of a large-scale battery energy storage systems in the USA were powered by lithium-ion batteries. The current global statistics are pretty much the same. This type of rechargeable battery is widely popular in electric vehicles, consumer electronics, and portables, such as smartphones, laptops, tablets, and cameras. Li-ion battery chemistries comprise lithium cobalt oxide, lithium manganese oxide, lithium iron phosphate, lithium nickel manganese cobalt oxide (NMC), and others. The advantages of a Li-ion battery make it one of the leading technologies facilitating the storage of energy. The global lithium-ion battery market is projected to triple by , reaching $278 billion. It’s light and compact, has high capacity and energy density, low maintenance, and a long lifetime. In addition, lithium-ion batteries are easily and quickly charged and have a low self-discharge rate. The weak points of this battery technology include high cost, inflammability, and intolerance to extreme temperatures, overcharge, and overdischarge.
A lead-acid battery is the oldest battery technology and is also one of the cheapest and most available solutions that find use in automotive and industrial applications as well as power storage systems. PbA batteries are highly recyclable and can operate effectively at both high and low temperatures. Valve-regulated lead-acid (VRLA) batteries are more suitable for power storage solutions than their older counterparts—flooded lead-acid batteries—as they have a longer lifetime, higher capacity, and easier maintenance. Slow charging, heavyweight, and low energy density are among the major drawbacks of this battery technology.
This battery type prevailed in the market of wearable electronics until Li-ion batteries entered the game. Ni-Cd batteries have many configurations, they are inexpensive, easy to ship and store, and highly resistant to low temperatures. The technology is behind its competitors in energy density, self-discharge rate, and recycling. Nickel-metal hydride (Ni-MH) batteries use the same component as Ni-Cd technology—nickel oxide hydroxide (NiO(OH)). However, the Ni-MH battery chemistry provides better characteristics, such as higher capacity and energy density.
A sodium-sulfur battery is a cost-effective technology based on molten salt. The advantages of Na-S batteries involve high energy and power density, a long lifetime, and stable operation under extreme ambient conditions. Nevertheless, this battery technology has a limited application area because of high operating temperatures (not less than 300oC) and sensitivity to corrosion. In addition, sodium is a hazardous component that is highly flammable and explosive. Sodium-sulfur batteries are well-suited for standalone energy storage applications integrated with renewable power sources.
Unlike conventional rechargeable batteries in which energy is stored in solid electrode material, flow batteries store energy in liquid electrolyte solutions. The most common flow battery type is the vanadium redox battery (VRB). The other types consist of zinc-bromine, zinc-iron, and iron-chromium chemistries. Despite their low energy capacity and low charge/discharge rate, flow batteries have several important advantages, allowing them to hold a large market share in on-grid and off-grid energy storage systems, including large-scale applications. These benefits involve an extremely long lifespan (up to 30 years), high scalability, fast response time, and a low risk of fires because flow batteries contain non-inflammable electrolytes.
As of , BESSs accounted for 7.5 % of the global energy storage capacity, significantly less than pumped-storage hydro. According to The Business Research Company, the battery energy storage market size is expected to reach $13.8 billion at 25.7% CAGR globally by . Given the availability, efficiency, and latest advances in electrochemical storage technologies, a BESS is anticipated to be an energy storage leader in the years ahead. However, alternative solutions can go up against battery power storage systems, getting the upper hand in some applications. Here are the main BESS competitors:
Alternative energy storage technologies have already been available for the past few years. Some of them are already up and running, while others are still in the works. The sure thing about all of them is the need for reliable machine learning and artificial intelligence solutions. These would automate operations, reduce maintenance expenses, and ensure smooth performance with minimum human input.
Choosing batteries for energy storage can be beneficial for several reasons. First off, battery storage ideas have no limits regarding location—you don’t need to provide huge water tanks or underground air reservoirs. Owing to its availability and flexibility, a BESS can fit in well with applications that require varying power and storage capacity levels. Moreover, modern battery technologies tilt toward light weight, cost-efficiency, safety, and environmental friendliness. Let’s consider the use cases of a battery energy storage system and the essential problems it can solve.
BESSs help balance loads between on-peak and off-peak times. Electricity demands may vary depending on the day, time, season, and other factors. The higher the demand, the higher the electricity cost and vice versa—pricing gets lower during off-peak hours. By accumulating energy when the demand is low and discharging it in peak periods, battery storage solutions enable users to save on electricity tariffs (peak shaving).
As mentioned above, electricity prices fluctuate at different times, having both rises and falls. Battery energy storage systems allow for energy time-shifting—energy is purchased at a low price during off-peak periods and sold or used when the price increases. Thus, irrespective of the season and electricity demand, BESSs can equalize energy prices and minimize risks.
If you are looking for more details, kindly visit energy storage sports equipment.
A BESS can supply backup power in case of an electricity grid failure until complete power restoration. Larger storage capacity and integration with renewable energy sources enable BESSs to back up energy for longer periods. By operating as an uninterruptable power supply (UPS), a commercial battery storage solution can be a time and money saver as it eliminates downtime.
A BESS can replace a diesel or natural gas generator used by power plants to restore power generation after blackouts by leveraging its black-start capabilities. Based on battery storage, power systems can restart after a total shutdown without using external electricity networks. The fast response time of a BESS helps systems recover in the shortest possible time.
Battery storage systems can regulate frequency in the grid, making sure its value lies within the required range. If the amount of generated power disagrees with the actual electricity demand, the frequency can either exceed or fall below its nominal value. Such discrepancies may result in temporary disconnections, power failures, or blackouts. BESSs can immediately react to power interruptions, providing sub-second frequency response, and stabilize the grid.
A BESS can likewise ensure voltage stability, maintaining its level within the specified range.
Integrating battery energy storage systems with intermittent renewable energy sources opens the door to inexpensive electricity continuously available to on-grid, off-grid, and hybrid systems. More recently, clean energy has gained popularity as an economically viable and eco-friendly alternative to fossil fuels. According to Statista, renewable energy sources (hydro, wind, solar, bioenergy and other renewables) accounted for 30% of global electricity production in . Moreover, it is projected to reach 45% by . The proliferation of renewable energy-enabled storage solutions is extensively supported and incentivized by governments through subsidies and lower tax rates.
Battery storage technology enhances the efficiency of renewables. It makes them a reliable energy source for a variety of applications, including households with photovoltaics (PVs), off-grid commercial facilities, and isolated communities, such as islands and remote rural areas. Smart grids located in Rokkasho, a village in Japan, store solar and wind energy using a large-capacity BESS based on sodium-sulfur batteries. Currently, there are 92 wind power generation facilities and 3 solar power plants with a total capacity of 313,350 kW.
A BESS assists grid-tied and hybrid solar and wind systems with energy time-shift and demand-side management. For example, in windy weather, the system can power homes and charge batteries during on-peak and off-peak times respectively. Later, the battery energy storage system wind power can be used when the electricity demand is high and the variable energy resource is unavailable. Such a system has been installed and is running successfully in the Faroe Islands. Now, wind turbines generate power that covers about 50% of the islands’ energy needs.
Battery energy storage can eliminate the need to build new transmission and distribution systems or update existing T&D assets that lack capacity or become obsolete. By storing excess energy and providing reserve capacity, a BESS can take the load off overloaded T&D lines and prevent congestion in transmission systems.
A BESS is an essential part of microgrids—distributed power networks that can be connected to the utility grid or totally independent. Standalone microgrids located in remote regions can rely on battery storage systems integrated with intermittent renewable energy sources. Such solutions enable smooth power generation and help avoid heavy expenses and air pollution associated with diesel generators.
BESSs find wide use in different industries and application areas. For example, front-of-the-meter (FTM) applications comprise battery storage systems in electric power systems, such as utility-scale generation and energy storage facilities as well as transmission and distribution lines. Behind-the-meter (BTM) applications embrace transportation, including electric vehicles and marine systems, residential, commercial, and industrial battery storage solutions.
The Vistra Moss Landing Energy Storage Facility in California, USA, is the world's largest battery storage system. The 400 MW/ MWh BESS was commissioned to work in December . The storage capacity is expected to reach 750 MW/ MWh by the summer of .
Vistra, the retail electricity and power generation company previously criticized for climate pollution, is shifting its focus to renewable energy, doing its part to protect the environment and create new jobs.
Some of the world’s largest battery energy storage systems are the Alamitos Energy Center, Gateway Energy Storage (US), Hornsdale Power Reserve (Australia), Minety Battery Energy Storage Project (UK), Buzen and Rokkasho battery power plants (Japan), Korea Zinc Energy Storage System (South Korea), and Kunshan Energy Storage Power Station (China).
In , 4,027 MW / 12,155 MWh of battery energy storage was deployed in the US, compared to 3,000 MW / 9,500 MWh added to the grid in . As analyzed by Frost & Sullivan, the decrease in technology cost and rapid spread of renewables will boost the global grid battery storage capacity to 134.6 GW by .
The global energy storage market offers a great choice of off-the-shelf battery energy storage systems. They vary in battery chemistry, scale, functionality, intended use, and price. Here are some of the key BESS market players:
The global battery energy storage market is abundant in offers. As battery costs tend to fall, ready-made BESSs become more affordable to consumers. According to Statista, the price for lithium-ion batteries (that prevail in battery-based energy storage) has dropped by 90% in the past 11 years—from $1,220 in to $132 in per kilowatt-hour. But at the end of the day, the battery price will depend on the project size and storage capacity—small-scale projects will be charged higher than the average price.
Apart from the batteries, the total battery energy storage system cost consists of the cost of an energy management system, a BMS, a power conversion system, or inverter, and other components. Utilizing an out-of-the-box BESS may also entail expenses on installation, operation, maintenance, and warranty. For example, Tesla’s Powerwall provides 13.5 kWh of usable storage capacity, and its price can amount to $10,500, including the solar panel system and installation costs. Panasonic EverVolt allows for storing between 11.4 kWh and 17.1 kWh of energy, which will cost from $15,000 to $20,000 with solar panels, installation, and set up.
When choosing a battery energy storage system, you should consider plenty of factors other than its cost. They include:
Thus, BMS software plays a significant role in the overall performance of a battery storage system as it is responsible for charging and discharging along with battery safety.
Once you are set to buy an off-the-shelf battery energy storage system, make sure you or your staff have enough expertise and qualifications to check the quality and completeness of the entire system before making a purchase and supplying it to your customer.
Setting up, maintaining, and supporting a BESS may also require personnel training on your side unless you’re ready to pay for these services to the BESS provider. When buying a battery storage device, make sure the manufacturer offers a warranty that covers the repair or replacement of the system and its components in case of failure.
Purchasing an out-of-the-box BESS can definitely save your time, especially if you need a turnkey solution with no specific consumer requirements for the system. With a rich selection of battery energy storage products on the market, there is a high chance of finding a reliable manufacturer and a suitable option that could meet your customers’ needs.
Conversely, ready-made systems may have unreasonably priced electronics, pre-installed software of poor quality, and unnecessary features that add to the cost. They may also lack features desired by the end user or fail to satisfy the consumer’s industry and business niche demands or operating conditions and location requirements. In addition, not all BESS suppliers provide all-in-one solutions, and purchasing components and subsystems from different manufacturers can result in serious compatibility and interconnection issues. Developing a custom battery energy storage system can become an alternative that is worth looking at.
Tailor-made BESSs can make up for what’s lacking in out-of-the-box solutions offered by major battery storage systems providers. So, they can meet the exact needs of your potential consumers. However, implementing a custom product is a time-taking and resource-consuming task. Building a battery energy storage solution belongs to large-scale, long-running projects that can last for months or even years.
A BESS is a complex, multilayer engineering system, so developing a battery-based storage solution from the ground up requires deep knowledge in various fields, including battery technologies, power electronics, and embedded software development. In our upcoming articles, we’ll cover challenges associated with developing and implementing battery energy storage systems.
Choosing the right development team is half the battle; that’s why it’s essential to hire well-trained professionals with relevant experience. Creating a battery energy storage system from scratch takes specialists in electronic design, electrical engineering, low-level firmware, high-level software, and mechanical engineering for enclosure design.
The Integra Sources team could be the right fit for your project. We design PCBs for battery management, bi-directional power conversion, energy management, and safety systems of a BESS. Our engineers implement monitoring and control software and provide online data communication for remote BESS management. We create scalable battery energy storage solutions with fast response time, quick ramp rate, and high-efficiency power supply. Integrated with either electrical grids or renewables, our BESSs can serve for load management, power backup, frequency and voltage regulation, energy time-shifting, and many other purposes.
Manufacturing is another important challenge you’ll have to face when making your own battery energy storage product. The BESS manufacturing process involves a diversity of tasks that can be carried out at different production facilities. So, synergy is the key to efficient BESS manufacture.
You’ll have to take care of the product certification too. Apart from international standards, such as IEC, ISO, IEEE, and UL, a BESS is highly likely to need to meet specific national standards and certification requirements in each particular country. For example, in the United States, an energy storage system must also conform to the regulations of the Federal Energy Regulatory Commission (FERC), the Department of Energy (DOE), and some regulatory agencies at the state level.
In October , Australia and New Zealand developed AS/NZS :—a joint standard that sets general installation and safety requirements for battery energy storage systems. In addition, Australian BESS manufacturers must comply with a number of other national and international codes and standards.
Certification criteria may also depend on the industry and application area of a BESS. For example, DNV provides a recommended practice that contains guidelines for design, performance, operation, maintenance, and safety for energy storage used in marine systems. The document comprises specifications for charge/discharge rate, SOC, SOH, DoD, and many other system parameters and operating conditions.
The engineering team engaged in BESS development must be well-versed in the certification requirements and applicable standards. This helps mitigate risks in the system’s design and delivers a high-quality product to your end user on time and within budget.
Despite the challenges, designing a bespoke BESS can enhance usability, reduce operating costs, and improve the reliability of the system. After drilling down the market, you can heed the customers’ needs, consider the shortcomings of off-the-shelf BESSs, and create highly sought-after battery energy storage solutions.
Implementing your own product makes you independent of any particular BESS provider and its services. You can set up, maintain, support, and deliver other services to your customers in a prompt manner and without intermediaries.
A BESS is a multi-component energy storage system able to store varying amounts of electrochemical energy and use it later for a range of purposes—be it peak shaving, energy arbitrage, or a black start.
The advances in battery technology make a BESS a light and affordable solution for both residential and commercial use, including smart homes, large-scale industrial facilities, and utility grids. Buildings, villages, towns, and even entire islands can employ battery storage integrated with green energy for a reliable, self-sufficient power supply.
BESS manufacturers offer a wealth of options with various storage capacities and for any application and budget. However, purchasing an off-the-shelf system demands strong knowledge of the technology, and a ready-made BESS may not meet the specific requirements of an end user.
For more energy generating exercise bikeinformation, please contact us. We will provide professional answers.